

Andre Altmann¹, Hendrik Weisser¹, Francesca Incardona², Anders Sönnerborg³, Maurizio Zazzi⁴, Rolf Kaiser⁵, Thomas Lengauer¹, Hauke Walter⁶

1 Max Planck Institute for Informatics, Saarbrücken, Germany; 2 Informa srl, Rome, Italy; 3 Division of Infectious Diseases, Department of Medicine, Karolinksa Institute, Stockholm, Sweden; 4 Department of Molecular Biology, University of Siena, Siena, Italy; 5 Institute of Virology, University of Cologne, Cologne, Germany; 6 Institute of Clinical and Molecular Virology, University of Erlangen, Germany

Background

Replication capacity (RC) of specific HIV isolates is occasionally blamed for unexpected treatment responses. However, the role of viral RC in response to antiretroviral therapy (ART) is not yet fully understood. We developed a method for predicting RC from genotype and studied the impact of predicted viral RC (pRC) on the change of viral load (VL) and CD4⁺ T-cell count (CD4) during the course of therapy. **Methods & Results**

Two data sets comprising genotype-RC pairs were used to train support vector machine (SVM) models. One SVM model using a polynomial kernel (degree 3) was trained for every data set. The model trained on the data set originating from *Erlangen* (253 genotype-RC pairs) achieved a Spearman correlation (ρ) of 0.542 (right scatter plot) in Leave-One-Out-Cross-Validation. The model trained on the *Monogram* data (n=317) [1] reached ρ =0.546 (left scatter plot).

-					-			
	rank	Monogram	influence	Erlangen		Erlangen	influence	Monogram
		mutation		rank		mutation		rank
	1	RT M184V	dec.	19		RT Q207E	inc.	240
Ĩ	2	PR K43T	dec.	568	1	PR V82A	dec.	127
ľ	3	RT A158S	dec.	126	1	RT Y181C	inc.	150
ľ	4	PR Q92R	dec.	401	1	RT T215Y	dec.	18
ĺ	5	PR I64L	dec.	886	1	RT K20I	inc.	49
ľ	6	PR K55R	dec.	602		PR I13V	dec.	132
ĺ	7	PR E34K	dec.	483		RT E122K	inc.	
Ĩ	8	PR I47V	dec.	366	1	RT L74V	inc.	141
Ĩ	9	PR V32I	dec.	131		RT S162C	inc.	255
	10	PR P39S	dec.	141	1	RT T39E	dec.	267

The contribution of mutations to the predicted replication capacity differed among data sets / SVM models (see table). However, protease sequences in the Erlangen data set were highly mutated (61% had one or more and 25% had 5 and more mutations of [2]) compared to protease sequences of the Monogram data set (28% had one or more and 3% had 5 and more mutations).

For 2,913 protease and reverse transcriptase (RT) sequences extracted from the EuResist database resistance against 17 antiretroviral drugs was computed with geno2pheno_[resistance]. The continuous values were discretized using the geno2pheno clinical cut-offs: Susceptible (0.0), Intermediate (0.5), Resistant (1.0). For every sequence resistance against all drugs was summed, resulting in a *cumulative resistance* score (CRS) that ranges between 0 and 17. The CRS was plotted against the pRC of the Monogram model (top; ρ =-0.534) and of the Erlangen model (bottom; ρ = -0.233).

The pRC of both models was also correlated to the resistance of single drugs (right figure). For the Erlangen model a clear separation of PIs, NRTIs, and NNRTIS was visible. Pls were most (inversely) correlated to pRC, whereas NNRTIs were not correlated at all.

Relation of pRC and treatment experience

For 5,475 protease and RT sequences extracted from 3,869 patients of the EuResist database the CRS and pRC was computed and correlated to the number of treatments prior to the sequencing. Treatment naïve patients formed the largest group. CRS was clearly positively correlated to the number of treatments (upper box plot; ρ =0.560), and pRC computed with the Monogram model (middle box plot; ρ =-0.336) and with the Erlangen model (lower box plot; ρ =-0.231) was negatively correlated with treatment experience.

pRC during treatment interruptions pRC was computed for 162 sequences of 57 Monogram RC predictions Erlangen RC predictions patients undergoing a treatment interruption. One sequences was obtained at end of treatment and at up to four different time points during the break. The first measure during the

Clinical relevance of pRC

Treatment change episodes (TCEs) were extracted from the EuResist integrated database. Baseline measures were taken up two 90 days prior to treatment start. Follow-up measurements were taken at different time points.

time	baseline	90 days	180 days	360 days	720 days	1080 days
measure		follow-up	follow-up	follow-up	follow-up	follow-up
viral load	2913	2031	2047	1457	675	333
$CD4^+$ T-cell count	2376	1621	1613	1154	526	252

The figure on the left shows the Spearman correlations between clinical markers (VL and CD4) and predicted RC or the *treatment activity score* (TAS) at baseline and at different time points during the treatment. The TAS is equivalent to a phenotypic susceptibility score computed with geno2pheno. Correlations with VL are in general better. In addition, TAS is better correlated to VL and CD4 than pRC.

break was about two months after end of treatment. The last measure during the break was at varying time points. The box plots on the right display the difference in predicted RC between the baseline measure and the first (n=56) and last (n=30) measure during the break, respectively.

Conclusions

Viral RC, as measured by two different phenotypic tests, could be predicted from genotype with moderate accuracy. Pre-existing notions about RC were confirmed, e.g. increase of pRC during treatment interruption, relation of RC with treatment experience, expected direction of pRC with baseline measurements. Indeed, pRC could slightly improve prediction of virological treatment response. In general, pRC was significantly correlated with drug resistance. In summary pRC does not appear to provide substantial information over drug resistance, since the latter remains the dominant factor in predicting response to ART.

Acknowledgements

References

3TC ddl ddc ddC ddT ddT ddT DLV NVP

The work was supported by the Eu*Resist* project (IST -4- 027173-STP). We thank Mark Segal for making the Monogram RC dataset available to us. We also thank Melanie Balduin for providing the treatment interruptions dataset.

- 1. Mark R Segal, Jason D Barbour, and Robert M Grant. Relating HIV-1 sequence variation to replication capacity via trees and forests. Stat. Appl. Genet. Mol. Biol., 3:Article2; discussion article 7, article 9, 2004.
- 2. Robert W Shafer and Jonathan M Schapiro. HIV-1 drug resistance mutations: an updated framework for the second decade of HAART. AIDS Rev., 10(2):67–84, 2008.